

Guidance Arising From Recent Research on Masonry Arch Bridges

Prof. Matthew Gilbert University of Sheffield

Bridge Owners' Forum 15th May 2018

Background & supporting research

Background

- When loading regime changes, current assessment tools sometimes not discriminating
 - e.g. sudden deterioration after pattern of loading changes
 - Expensive consequences...

Current assessment approach

- SLS and ULS considerations are usually combined (e.g. SLS deemed satisfied if working load ≤ 0.5×ULS load)
 - Over-conservative for bridges where real SLS load and ULS load are close together
 - Under-conservative for bridges where real SLS load and ULS load are far apart

To address this:

- Need a better holistic understanding of archbridges at <u>ultimate</u> and <u>working</u> load states
- To help achieve this, EPSRC funded research project was undertaken:
 - Focus has been on <u>soil-filled</u> bridges, with 3 strands:

1. Experiments

2. Modelling

3. Guidance

The effect of soil backfill

What about working loads?

- Repeated (cyclic) loads can lead to degradation of the bridge
- 'Permissible limit state' (PLS) = the state beyond which long term load induced degradation occurs:
 - No clear link between the ULS and the PLS
 - Hence need to establish the PLS directly

Experimental

- New 'medium scale' rig
- Automated filling and testing
- Benefits: rapid turnaround and high quality data

Experimental [2]

- Existing '<u>large scale</u>' rig upgraded to allow cyclic and railway loads to be applied
- Benefits: 3m spans are representative of many bridges in the field

Key project findings

- Below a certain load level repeated cyclic loads can be applied with seemingly no limit
- At higher levels of load repeated cyclic loads will cause damage and potentially curtail the life of a bridge
- The trigger point appears to be the point at which horizontal soil pressures start to need to be mobilized, to restrain the barrel

Guidance

May 2018 draft

- 'Straw man' for comment
- Feedback / comments welcome on e.g:
 - Format
 - Coverage (i.e. key gaps etc.)
 - Detailed content
 - Potential role of the document
 - Pilot application
 - Possible distribution channels

Key recommendations

- 1. MEXE is not to be used, as it has very limited predictive capability
- 2. Separate ULS and PLS checks should be carried out

ULS check

- BD21 uses a factor of 3.4 on the critical axle, based on serviceability concerns
- If this is dealt with separately, the factor can be reduced to 2.5*

*though proposed 'model factor' of 1.0 to 1.2 may effectively increase this, up to 3.0

PLS criteria

I. System level: excessive deformation

- Largely rigid body masonry movements due to 'lack of fit' and/or reliance on passive soil restraint
- Leads to ratcheting (distortion of profile) and/or degradation of masonry due to continual opening & closing of joints
- II. Material level: fatigue damage
 - Repeated application of large stress ranges reduces mechanical performance of masonry

Simplified PLS check

- Seeks to combine PLS-I and PLS-II criteria into a single calculation, in which:
 - Passive restraint is neglected (as is the influence of other 'flexible' elements)
 - Reduced masonry strength is used (to take some account of fatigue damage effects)
- Most appropriate for short span bridges, where PLS-I likely to dominate (otherwise may need separate PLS-II check)

Sample results (lab. bridges)

	Unfactored (kN/m)		Factored (kN/m)		
	ULS	PLS	ULS (factor = 2.5)	PLS (factor = 1.7)	BD21 ULS (factor = 3.4)
Salford bridge 1	122	71	49	<u>42</u>	36
Salford bridge 2	96	79	<u>38</u>	46	28
Salford bridge 5	274	71	110	<u>42</u>	81

Also in the draft guidance

Simple sketches to illustrate behaviour

Request for feedback

- Feedback / comments welcome on e.g:
 - Format
 - Coverage (i.e. key gaps etc.)
 - Detailed content
 - Potential role of the document
 - Pilot application
 - Possible distribution channels
- And next steps?

Acknowledgements

Colin Smith, Clive Melbourne & Graham Cole

(plus funders EPSRC & Network Rail, and all project steering committee members)

Assessment calculations: loads

Table 17 – Actions: partial load factor (yr) values

Description	ULS Value	PLS Value
Permanent unfavourable action, γ_G	1.35	1.0
Variable unfavourable action (critical axle), γ_Q	2.5	1.7
Variable unfavourable action (other axle), γ_Q	1.7	1.0
Permanent favourable action, γ_G	1.0	1.0

Assessment calculations: resistance

Table 18 – Resistance: partial factor values and modelling assumptions (assessment Levels 1 and 2)

Description	ULS Value / Assumption	PLS Value / Assumption
Model factor (y _{Rd})	1.2 (Level 1)	1.0
	1.1 (Level 2)	
Partial factor on masonry strength (γ_m)	1.0	2.0 (if no information available)
		Varies (if test or model data available)
Peak lateral earth pressure coefficient (K)	Mobilised (e.g. 0.33Kp)	1.0
Assumed load spreading due to presence of near-surface elements (e.g. rail)	Modelled	Not modelled (unless test or model data available)

PLS-I: analysis

 Neglect passive restraint in ULS style analysis (since passive restraint requires large structural deformations to generate)

ULS & PLS-I analyses: load vs. position

PLS-II: analysis

1. Start with (likely) current state, e.g.

- 2. Next traverse (increasing) service loads across bridge
- 3. Evaluate stress ranges in the masonry, and crossreference with material fatigue characteristics

PLS-II: analysis (cont.)

• In arch analysis we often use M-N envelopes

• For PLS we can do the same:

