

TfL BOF Update

Stephen Pottle

Risk Based Inspection Intervals

- Phase 1 trial successfully completed in 2010
- Phase 2 improvements
 - Atkins to commence in Feb 2011
 - Minor tweaks
 - Profile smoothing
 - User guide
 - Integrate with BridgeStation and LoBEG

Parapet Risk Assessment

The Issues

Background

Not deemed suitable for the TLRN

- Speed < 50mph
- Lower AADT
- Higher impact angles
- Non-standard road configurations
- Other high risk hazards

Parapet Risk Assessment

- Bespoke TfL system based on the principles set out in TD19 to assess and rank parapet incursion risk for TLRN structures - developed with Hyder
- Based on the three main elements that define parapet requirements on a highway structure:
 - Incidence
 - Consequence
 - Mitigation

• Incidence

- Risk of a vehicle departing from its line of travel and crossing the boundary of the structure
- Governed largely by site geometry and highway usage
 - Traffic volume
 - Traffic speed
 - Traffic manoeuvres / junctions
 - Highway alignment
 - Carriageway configuration
 - Parapet length
 - Visibility
 - Highway interactions

Consequence

- Consequence varies dramatically depending on land use
- Categories:
 - Railways: main line, underground, light rail, industrial, depots, sidings
 - Industrial and utility complexes: Ranging from high risk gas, fuel and chemical facilities to industrial estates and retail facilities
 - Highway adjacent or below
 - Schools, hospitals, social complexes, car parks and recreational areas
 - **Residential Properties**
 - Waterways: Tideway, navigable and non-navigable

• Mitigation

- Parapet or other vehicle restraint system
 - Parapet type
 - Proximity to carriageway
 - Orientation to direction of travel
 - Parapet condition
- Other factors that either reduce the likelihood of incidence or directly provide mitigation
 - Additional vehicle restraint systems placed in front of parapets
 - Safety fences
 - Vertical concrete barriers
 - Pedestrian guardrail
 - Trief kerbs

- Parapet Index
 - **PI = 100.IS. CS. MF -1/ PS (maximum)**

Where:

- IS = s.kf(n(x)) (actual)/ kf(n(x)) (maximum)
- CS = s (actual).k (actual)/s (maximum).k (maximum)

MF = s.n (actual)/ n (maximum)

• Parapet Index scale from 0 (best) to 100 (worst)

θ

- Red Amber Green (RAG)
- Based on the consequences (measured by cost) of an incursion
- Cost of an incursion estimated as the sum of a number of component costs e.g.:
 - remedial works
 - traffic diversions
 - injury/loss of life

Red Zone (unacceptable risk)

- PI score equal to or greater than 90
- Cost of an event greater than £1 million
- Multiple fatalities
- Major disruption to the network for significant durations
- Significant indirect costs
 - rail delay
 - traffic delay
 - disruption to industrial facilities and utilities supplies
- National political and reputational implications with national media coverage

Amber Zone (tolerable risk)

- PI score <90 and >45
- Cost of an event <£1M and >£40K
- Possible fatality
- Disruption to the network for up to a few days
- Likely to result in some indirect costs
- Regional political and reputational implications with regional media coverage

Green Zone (broadly acceptable risk)

- PI score equal to or less than 45
- Cost of an event up to £40k
- Unlikely to result in a fatality, but possible serious injury
- Minor network disruption over a short duration of less than a day
- Likely to lead to minor indirect costs
- Possible local political implications with local media coverage - unlikely to affect reputation

Our Approach

- Desk top study
 - Initial sift
 - 277 forms
 - Google maps, street view etc.
 - Local knowledge
 - More detailed review starting with high risk structures
 - Greater interrogation of structure records
 - Site visit and measurements may be appropriate
 - Some risk scores reduced, others increased
 - Initial proposals and estimated costs for mitigation works ALARP
 - Simple cost benefit analysis
- Installation of interim measures
- Design of permanent upgrades, replacement, strengthening
 - Include detailed site survey, testing etc to confirm assumptions made during desk study
 - May lead to further reduction in sites that need to be addressed

Outcome after initial desk study

Outcome after initial desk study

 Θ

Next Steps

- Production of user guide
- Adoption by LoBEG
- Trial by ADEPT Bridges Group Members
- Extending to include all road restraint systems
- Add module to bridge management system
- Debate?

LoBEG/TfL

- Lifecycle planner
- Maintenance
 Prioritisation
- Value for Money
- Structures Investment Planner (DfT)
- General improvements
 to BridgeStation

tfl.gov.uk